Nanofabrication for optical biosensors

M. Liley

Swiss Centre for Electronics and Microtechnology, CSEM SA

Biosensors

- "... a device for the detection of an analyte that combines a biological component with a physicochemical detector component."
 (*Compendium of Chemical Terminology*)
- Self-contained integrated device, three parts:
 - Sensitive biological element
 - Physicochemical transducer (detection element)
 - Associated electronics or signal processors

Solid-phase immunoassays

• Direct detection (MW > 10 kD)

• Sandwich immunoassay (MW 1-10 kD)

Why nano for biosensors?

- Enhanced celectivity
- Enhanced sensitivity
 - High surface area (catalytic properties)
 - Electromagnetic field enhancement (optical properties)
 - Efficient electron transfer (electrochemical properties)
- Multiplexing
 - Very high density arrays

Optical biosensors:

- Direct, label-free detection usually based on refractive index
 - Waveguide, surface plasmon resonance, ellipsometric sensors
 - n_{protein} ~ 1.45; n_{water} ~ 1.33
 - Detection limits ~ pg on classical waveguides and similar
 - Continuous measurements
- Fluorescence detection
 - Need to label at least one species and add to sample
 - Extreme sensitivity and specificity
 - Fluorescence intensity difficulties due to bleaching and background fluorescence

A biosensor for wound dressings

S. Pasche et al Adv. Science & Tech.**57** (2008) 80

Evanescent wave sensing

Dielectric Slab Waveguide

Concentration of wave energy in core layer. Exponential decay in cover/substrate layers. TE, TM, mono- / multi-mode

Surface Plasmon Interface

Special electromagnetic mode propagating at a metal/dielectric interface with exponential decays. Single propagating TM mode

Surface Plasmon Polariton (SPP) waves

- SPP wave:
 - EM wave confined at metal/dielectric interface
 - EM wave and charge oscillations interaction

Dispersion relation from Maxwell's equations

 $k_{SPP} = \frac{\omega}{c} \sqrt{\frac{\varepsilon_1 \varepsilon_2}{\varepsilon_1 + \varepsilon_2}}$

Coupling into confined modes

Prism coupling

Applied for:

- Waveguide
- Surface plasmon resonance

Grating coupling

Applied for:

- Waveguide
- Surface plasmon resonance

Evanescent sensors

Evanescent field sensors are highly sensitive to any changes close to the sensor surface (e.g. such as binding of molecules to an immobilized sensing layer)

Evanescent sensing by wavelength tuning:

- Tunable laser light (laser diode, $\Delta\lambda \sim 2$ nm)
- Sensitivity: Δn <10⁻⁵ (< 1 ng/cm²)

Input pad	Output pad	

Refractive index sensors: surface plasmon polaritons

- Operating principle of SPR sensors is similar to waveguides
- Sensitivity is similar too
- Commercially available (e.g. <u>www.biacore.com</u>)

Extraordinary optical transmission

- Gold film with a periodic array of holes
- Measure the amount of light passing through the gold film:

 $\eta = \frac{P}{P_0} * f$ where *f* is the filling fraction of the holes

 η > 1 means that the photon flux transmitted by each hole is higher than the incident one!

> Extraordinary Optical Transmission (EOT)

T. W. Ebbesen et al., Nature **391**, 667–669 (1998) *C. Genet et al., "Light in tiny holes", Nature* **445**, 39-46 (2007)

Metal nanoparticles:

• New synthetic methods allow the production of quantities of metal particles of all shapes and sizes

Local surface plasmon polaritons:

- Surface plasmons exist on metal nanostructures
- Resonance is determined using extinction spectrum (absorption + scattering)

Real and imaginary parts of metal dielectric constant

$$E(\lambda) \propto \frac{a^3 \varepsilon_{out}^{3/2}}{\lambda} \left[\frac{\varepsilon_i(\lambda)}{(\varepsilon_r(\lambda) + \chi \varepsilon_{out})^2 + \varepsilon_i(\lambda)^2} \right]$$

dielectric constant of external medium

K.A. Willets & R.P. Van Duyne, Annu. Rev. Phys. Chem. 2007. **58**:267

geometric factor (2 < χ < 20)

Measuring extinction/scattering spectra:

- Spectra can be acquired in transmission or reflection
- Single particles can be interrogated using dark field microscopy

K.A. Willets & R.P. Van Duyne, Annu. Rev. Phys. Chem. 2007. **58**:267

Optical properties depend on size, shape and material

• Extinction spectra from silver structures on mica

J.N. Anker et al Nature Materials 7 (2008) 442

Single nanoprisms can be used for refractometry

Scattering spectra from a single silver nanoprism in different environments: nitrogen, methanol, propan-1-ol, chloroform and benzene

J.N. Anker et al Nature Materials 7 (2008) 442

Silver prisms can be used for biosensing:

- Adsorption of molecules to the prisms is observed as a refractive index change
- Biosensing has been demonstrated

Adsorption of octanethiol onto single nanoparticle

J.N. Anker et al Nature Materials 7 (2008) 442

Fluorescence measurement of single molecules

- Fluorescence correlation spectroscopy (FCS)
- Use a small sample volume (fL)
- Measure fluorescence intensity variations caused by single molecules diffusing across the volume
- Concentrations in pM-nM range

P. Schwille and E. Haustein, Biophysics Textbook Online

Fluorescence measurement of single molecules

- Number (concentration) of fluorescent species can be determined
- Diffusion constant gives us dimension of molecule
 - R_H α 1/D
- Binding of small fluorescent ligands to large receptors can be measured (but only if increase in mass > 5)
- BUT max concentration of ligand 10⁻⁹ binding constant must be higher!
- Enzymatic reactions can also be studied but same problem with concentrations.

Zero order waveguides:

- Define FCS volume using subwavelength holes in metal film
- Evanescent field within hole
- Excitation volumes: $10^{-18} 10^{-21}$
- Easier alignment

M. J. Levene, *et al* Science **299**, 682 (2003);

Zero order waveguides: DNA sequencing

- DNA polymerase in wells
- Fluorescently labelled nucleotides
- Base incorporation gives fluorescent pulse

John Eid, *et al.* Science **323**, 133 (2009);

Zero order waveguides: DNA sequencing

- Errors in sequencing corrected by repeat sequences
- Arrays of 3000 wells increase data acquisition speed

John Eid, *et al.* Science **323**, 133 (2009);

Plasmonic structures for nanobiosensing

- Fabrication of plasmonic nanostructures often based on focussed ion beam milling or e-beam lithography
- Versatile, serial method.
- Top-down methods: the best structures but expensive and slow
- Methods for mass production are necessary
- Bottom-up methods are less precise but parallel and cheap

Nanotechnology: top-down vs. bottom-up

- Classical (micro-) fabrication of MEMS (Micro Electro Mechanical Systems)
- Lithography:
 - VIS
 - UV, X-ray, e beam
 - FIB (serial)

Nanotechnology: top-down vs. bottom-up

Using bottom-up, self-organisation, methods

- We can cover large areas with bottom up methods
- We can get good (but not perfect) order
- We can not have precise positioning of features
- We can not have non-uniform surfaces
- We must target applications where these aspects are not critical

Fabrication of plasmonic nanostructures:

- Arrays of sub-micron spheres act as a mask
- Ag evaporation and lift-off

K.A. Willets & R.P. Van Duyne, Annu. Rev. Phys. Chem. 2007. **58**:267

Colloidal self-assembly: vertical deposition

- For small particles, surface tension is the biggest force
- D ~ 1micron, surface tension ~ 10⁻⁷ N, weight ~ 10⁻¹¹ N
- High order requires monodisperse spheres

Colloidal self-assembly: spin coating

- Fast
- Compatible with clean room technologies
- Defect density OK
- Uniform coating over the whole surface

Bead deposition methods

CSEM centre suisse d'électronique et de microtechnique

Copyright 2009 CSEM | BCN April 2009 | M.J.K. Klein | Page 31

Holes arrays using FIB and using nanospheres?

Etching vs lift-off:

Copyright 2007 CSEM | GIPs | MLi | Page 33

Size, spacing and organisation:

- Monodisperse spheres in a range of polymers and inorganics and of sizes (20nm – 10 microns) available commercially
- Polystyrene beads can be etched selectively (oxygen plasma only removes organics)
- Sphere spacing and diameter independent
- Spin coating can give non- hexagonal packing

Spin-coating of polystyrene beads $(\emptyset = 517 \text{ nm and } 419 \text{ nm})$

Not as easy as it looks!

Smaller structures: using block-copolymers

Smaller structures: using block-copolymers

• Polymer micelles form in solution and are deposited by spin-coating

Tuning size using solvent mixtures

Tuning spacing using concentration

CSEM centre suisse d'électronique et de microtechnique

MLi :: 07.07.2009 :: Page 39

Responsive surfaces: PS-P2VP micelles

S. Krishnamoorthy et al Langmuir (2006) **22,** 3450

CSEM centre suisse d'électronique et de microtechnique

MLi :: 07.07.2009 :: Page 40

Block copolymers as etch masks: nanopillars

PS-P2VP micelles on silicon

- Short oxygen plasma removes a thin layer of organics
- Fluorine plasma etches silicon

 Remove remaining organics (solvent/oxygen plasma)

S. Krishnamoorthy et al Langmuir (2006) **22,** 3450

Block copolymers as etch masks: nanopillars

Block copolymers as etch masks: nanopores

Block copolymers as etch masks: nanopores

- In silicon
- Aspect ratio ~11
- Pore diameter 80nm, depth 850nm
- Pore diameter 40nm, depth 470

From nanostructured surface to nanoporous membrane

 Combination with microfabrication processes for the fabrication of suspended nanoporous membranes as part of new MEMS

- The membrane is supported by 20 μm thick silicon beams which are spaced about 7 μm to withstand a few bars differential pressure
- Applications: ultra-filtration, molecules separation

Templates: polymer demixing

- Solution of two polymers spin-coated
- As solvent evaporates, polymers separate into two phases
- Phase structure depends on many parameters
- Typical polymers: polystyrene, polyvinylpyridine, polymethylmethacrylate

Demixed polymers as etch masks

Transfer into silicon using fluorine etch

Demixed polymers as etch masks

- Etch into polymers
- Use intermediate mask layer.

Demixed polymers: etch and then replicate

- Spinodally demixed polymer layer etched quasi-vertically into silicon.
- The silicon 'master'

Demixed polymers: etch and then replicate

• Master in silicon

Replication in PDMS

• UV-casting in Bis-GMA/TEGDMA

• Demoulding

Modifying individual structures:

- Microfabricated hollow AFM cantilevers
 - Open at the AFM tip
 - Reservoir in the silicon chip
- AFM force feedback
 - Gentle contact to fragile samples
 - Imaging of small objects
- Liquid dispensing in air and water

Nadis

Functionalization of high-sensitive microarrays

4.0

2.D

6.D

8.0

11 16

Acknowledgements

- Sivashankar Krishnamoorthy
- Ana Maria Popa
- Mona Klein
- Mickaël Guillaumée
- Nicolas Blondiaux
- André Meister
- Christian Hinderling
- Raphael Pugin
- Harry Heinzelmann

322	333	3315	(LAS
15.35	NY.	28:33	14.33
45071	333		
12524	23	会祝	523
Se 2.5	14	fi II	
1.2.2	254	III:	224
12.127		1111	
Acc.V Spot Magn 10.0 kV 3.0 1468	Det WD Exp 7x SE 14.5 1		Η 2 μm